Recent Progress in Understanding the Electrical Reliability of GaN High-Electron Mobility Transistors

J. A. del Alamo Microsystems Technology Laboratories Massachusetts Institute of Technology

2015 MRS Spring Meeting

Symposium AA: Materials for Beyond the Roadmap Devices in Logic, Power and Memory

San Francisco, CA, April 6-10, 2015

Acknowledgements:

C. Y. Chen, F. Gao, J. Jimenez, D. Jin, J. Joh, T. Palacios, C. V. Thompson, Y. Wu ARL (DARPA-WBGS program), NRO, ONR (DRIFT-MURI program),

Outline

- 1. A few "universal" observations
- 2. Hypotheses for degradation mechanisms
- 3. Many questions...

GaN HEMT: breakthrough RF power technology

Counter-IED Systems (CREW)

200 W GaN HEMT for cellular base station Kawano, APMC 2005

> Sumitomo Remote Radio Head for Japanese Base Station

100 mm GaN-on-SiC volume manufacturing Palmour, MTT-S 2010

GaN HEMT: Electrical reliability concerns

Critical voltage for degradation in DC step-stress experiments

 I_D , R_D , and I_G start to degrade beyond *critical voltage* (V_{crit}) + increased trapping behavior – current collapse

Critical voltage: a universal phenomenon

Meneghini, IEDM 2011

Ivo, MR 2011

GaN HEMT on Si

GaN HEMT on Si

Demirtas, ROCS 2009

GaN HEMT on sapphire

Ma, Chin Phys B 2011

6

Structural degradation; correlation with electrical degradation

Chowdhury, EDL 2008

• Pit depth and I_{Dmax} degradation correlate

Structural damage at gate edge: a universal phenomenon

Barnes, CS-MANTECH 2012

Dammann, IIRW 2011

Marcon, MR 2010

Cullen, TDMR 2013

Chang, TDMR 2011

Structural degradation: planar view

Unstressed

OFF-state stress: V_{DG}=57 V, T_{base}=150 °C

Makaram, APL 2010

- V_{stress}>V_{crit}: pits along gate edge
- Pit cross-sectional area correlates with I_D degradation

Structural damage at gate edge: a universal phenomenon

Barnes, CS-MANTECH 2012

Monte Bajo, APL 2014

Whiting, MR 2012

Holzworth, ECST 2014

Brunel, MR 2013

Time evolution of degradation for constant V_{stress} > V_{crit}

I_{Goff} and V_T degradation:

- fast (<10 ms)
- saturate after 10⁴ s

Permanent I_{Dmax} degradation:

- much slower
- does not saturate with time

Joh, IRPS 2011

The role of temperature in time evolution

DC semi-ON stress experiments

Thermally activated degradation

- Pit/trench depth increase towards center of gate finger
 → self heating + thermally activated process
- Permanent I_{Dmax} degradation thermally activated with $E_a \sim 1.0 \text{ eV}$

Summary of electrical and structural degradation under OFF and Semi-ON bias

1. I_G degradation

- Fast
- Electric-field driven
- Weak temperature sensitivity (E_a~0.2 eV)
- Tends to saturate

Correlates with appearance of shallow *groove* and *small pits*

2. I_{Dmax} degradation

- Much slower
- Electric-field driven
- Temperature activated (E_a~1 eV)
- Starts after I_G saturated
- Does not saturate

Correlates with growth of *pits* and merging into *trenches*

Initial hypothesis: Inverse Piezoelectric Effect Mechanism

Predictions of Inverse Piezoelectric Effect model borne out by experiments

To enhance GaN HEMT reliability:

- Reduce AIN composition of AIGaN barrier (Jimenez, ESREF 2011)
- Thin down AlGaN barrier (Lee, EL 2005)
- Use thicker GaN cap (Ivo, IRPS 2009; Jimenez, ESREF 2011)
- Use InAIN barrier (Jimenez, ESREF 2011)
- Use AlGaN buffer (Joh, IEDM 2006; Ivo, MR 2011)
- Electric field management at drain end of gate (many)

Can't explain:

- Groove formation/I_G degradation below critical voltage
- Sequential nature of I_G and I_D degradation
- Presence of oxygen in pit
- Role of atmosphere during stress

I_G degradation not critical; TDDB*-like

Marcon, IEDM 2010

- I_G starts increasing for V_{stress} < V_{crit}
- Onset enhanced by V_{stress}
- Weibull distribution
- Preceded by onset of I_G noise

TDDB = Time-Dependent Dielectric Breakdown

I_G correlates with EL; EL hot spots correlate with pits, pits are conducting

Zanoni, EDL 2009

EL picture

Montes Bajo, APL 2012

AFM topography

Normal AFM

Conducting AFM

Shallow pits responsible for I_G degradation

Sequential I_G and I_D degradation

"Universal" degradation pattern:

- I_G degradation first without I_D degradation
- I_D degradation next without further I_G degradation
- \bullet "Corner" of I_{G} and I_{D} same for all samples

Oxygen inside pit

- O, Si, C found inside pit
- Anodization mechanism for pit formation? (Smith, ECST 2009)

Role of atmosphere on structural degradation

Off-state stress:

 $V_{ds} = 43 \text{ V}, V_{gs} = -7 \text{ V}$ for 3000 s in dark at RT

> Stressed in watersaturated gas (Ar) $\Delta I_D = 28.8\%$

> > Stressed in dry gas (Ar) ∆I_D=0.3%

Gao, TED 2014

- Moisture enhances surface pitting
- Results reproduced with dry/wet O₂, N₂, CO₂, air and vacuum

New phenomenon: AlGaN corrosion

Electrochemical cell formed at drain edge of gate

Source of holes: trap-assisted BTBT

Source of water: diffusion through SiN

Electrochemical reaction (requires holes):

 $2\mathsf{AI}_{\mathsf{x}}\mathsf{Ga}_{\mathsf{1-x}}\mathsf{N} + \mathsf{3H}_{\mathsf{2}}\mathsf{O} \leftrightarrow \mathsf{x}\mathsf{AI}_{\mathsf{2}}\mathsf{O}_{\mathsf{3}} + (\mathsf{1-x})\mathsf{Ga}_{\mathsf{2}}\mathsf{O}_{\mathsf{3}} + \mathsf{N}_{\mathsf{2}} + \mathsf{H}_{\mathsf{2}}$

Gao, TED 2014

Tentative complete model?

Step 1: formation of shallow pits/continuous groove in cap

• TDDB-like formation of small conducting paths: $I_{G}\uparrow$

Step 2: growth of pits through anodic oxidation of AIGaN

I_{Dmax} as electron concentration under gate edge reduced

Makaram, APL 2010

Exponential dependence of tunneling current on electric field \rightarrow origin of *"critical voltage" behavior?*

Many questions...

- Why weak temperature activation of I_G degradation?
- Why does I_G degradation tend to saturate?
- Why does I_D degradation start as I_G degradation saturates?
- Does mechanical stress and inverse piezoelectric effect play role?

- Why large variability in reliability?
- Is this all relevant under RF power conditions?